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Abstract—Effective three-dimensional streamline placement
and visualization plays an essential role in many science and
engineering disciplines. The main challenge for effective stream-
line visualization lies in seed placement, i.e., where to drop seeds
and how many seeds should be placed. Seeding too many or
too few streamlines may not reveal flow features and patterns
either because it easily leads to visual clutter in rendering
or it conveys little information about the flow field. Not only
does the number of streamlines placed matter, their spatial
relationships also play a key role in understanding the flow field.
Therefore, effective flow visualization requires the streamlines to
be placed in the right place and in the right amount. This paper
introduces hierarchical streamline bundles, a novel approach to
simplifying and visualizing 3D flow fields defined on regular
grids. By placing seeds and generating streamlines according
to flow saliency, we produce a set of streamlines that captures
important flow features near critical points without enforcing
the dense seeding condition. We group spatially neighboring
and geometrically similar streamlines to construct a hierarchy
from which we extract streamline bundles at different levels
of detail. Streamline bundles highlight multiscale flow features
and patterns through clustered yet not cluttered display. This
selective visualization strategy effectively reduces visual clutter
while accentuating visual foci, and therefore is able to convey the
desired insight into the flow data.

Index Terms—Streamline bundles, flow saliency, seed place-
ment, hierarchical clustering, level-of-detail, flow visualization.

I. INTRODUCTION

FLOW visualization is an important topic in scientific

visualization and has been an area of active research

for many years. We refer interested readers to [41] for an

overview of flow visualization and to [16], [17], [24], [27],

[30] for survey on specific topics such as feature extraction

and tracking [27], dense and texture-based techniques [16],

topology-based techniques [17], partition-based techniques

[30], and integration-based techniques [24]. This paper focuses

on integration-based techniques, i.e., streamline visualization.

Verma et al. [37] proposed three criteria for effective stream-

line placement and visualization: coverage, uniformity, and

continuity. While capturing important features and revealing

flow continuity are essential for generating correct, complete,

and pleasing visualization results, one can still produce mean-

ingful visualizations by not covering the entire domain and

not adhering to the principle of uniformity. For example, Li et

al. [19] demonstrated an illustrative technique that succinctly

depicts a 2D flow field using a minimum set of streamlines.
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For 3D flow fields, placing evenly-spaced streamlines that

cover the entire domain would inevitably lead to visual clutter

when projected to 2D for viewing. This poses a major obstacle

for effective visual understanding. Therefore, a visualization

that is concise but still captures critical flow features is

highly desirable. For real and complex flow data, prioritizing

flow features enables clear and controllable viewing. We thus

conjecture that a suitable solution for 3D flow visualization is

to selectively display streamlines that highlight important flow

features at various levels of detail (LODs). This paper presents

a technique that realizes this idea.

We present hierarchical streamline bundles, a new tech-

nique for summarizing and visualizing flow fields. Given an

input flow field, our method first generates a set of stream-

lines that captures important flow features. The seeding is

guided by the saliency map derived from the differences of

Gaussian-weighted averages of curvature and torsion fields

at multiple scales. We then cluster streamlines by grouping

spatially neighboring and geometrically similar streamlines

in a hierarchical manner. Hierarchical streamline bundles are

created at different LODs from streamlines that are close to

the boundaries of neighboring clusters. The saliency-guided

seeding strategy allows us to purposefully capture prominent

flow features without enforcing the dense seeding condition,

thus it is more efficient than random or uniform seeding

that does not consider flow characteristics. Furthermore, our

seeding does not extract critical points explicitly as required

in template-based seeding [37], [43]. In practice, this provides

a viable alternative to capture flow features as critical points

are often difficult to find in a robust manner. We note that

the general idea of hierarchical streamline bundles can be

applied to a set of streamlines produced from different seeding

strategies. The construction of a streamline hierarchy allows us

to produce multiscale streamline clusters from which stream-

lines lying on cluster boundaries are extracted. Together, these

boundary streamlines at a certain LOD form the streamline

bundles. For saliency-guided seeding, hierarchical streamline

bundles organize representative streamlines in the coarse-to-

fine manner, which makes it ideal for prioritizing a large,

complex flow field to enable flexible multiscale flow feature

exploration and observation. Such a capability is clearly more

desirable than overloading the viewers by presenting all flow

features, large or small, simultaneously.

Our work is inspired by fiber clustering in diffusion tensor

imaging (DTI) visualization [26] and edge bundling in tree and

graph visualization [9]. Clustering neighboring fibers traced

from DTI data allows clear observation of the fiber structure

and patterns. For tree and graph data, creating bundles from

adjacency edges significantly increases the readability of the

tree or graph being visualized. Both methods share the com-

mon theme of reducing visual clutter and facilitating data un-
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derstanding. In our scenario, streamline bundles extracted are

able to capture prominent flow features in a visually-striking

way. Note that edge bundling determines both edge grouping

and the paths of the edges. Our streamline bundles, like fiber

clustering, only determine grouping. Streamline bundles have

the following major advantages. First, streamline bundles are

guaranteed to pass through the vicinity of critical points and

are thus representative. Second, streamline bundles not only

enforce visual clarity by selective display but also accentuate

visual foci by clustered display. Third, streamline bundles

are organized hierarchically and can capture flow features of

varying scales at different LODs. Finally, streamline bundles

form a partition of the underlying flow field and streamlines

in each region of the partition are similar.

II. RELATED WORK

A. Streamline Seeding and Visualization

Streamline seeding is important because it can greatly affect

the quality of visualization. Simply placing seeds uniformly

or randomly may not produce satisfactory results. As such,

many research efforts have been devoted to develop good

seeding strategies. Examples include image-guided streamline

placement in 2D [36] and 3D [20], evenly-spaced streamline

placement in 2D [14], [21] and on surface [33], the farthest

seeding strategy [25], the flow-guided method in 2D [37] and

its extension to 3D [43], and dual streamline seeding [29].

Research efforts that are closely related to ours are priority

streamlines [32], similarity-guided streamline placement [4],

and illustrative streamline placement [19]. In our work, we

trace streamlines by taking a saliency-guided seeding strategy

that favors regions near critical points to capture important

flow features. Our work thus also shares some similarity with

the recent streamline selection work [23] in terms of capturing

and highlighting flow features through selected streamlines.

B. Clustering and Bundling

Clustering large and complex flow fields promotes the

understanding of flow structure. Clustering can be operated

on the original vector data [8], [34] or the integral line

data [26]. To cluster vector data, we can take a top-down

[8] or bottom-up [34] approach. Clustering integral lines is

commonly found in visualizing DTI data [26] where individual

fibers are reconstructed and clustered to obtain bundles for

easy understanding. The spatial proximity between two fibers

indicates their similarity and thus can be used in fiber clus-

tering [44]. Different distance measures have been proposed,

including the average of point-by-point distances between

corresponding pairs, the mean of closest point distances [5],

the thresholded average distance [3], the weighted normalized

sum of minimum distance [13], and the distance measured in a

transformed feature space. We advocate streamline clustering

instead of vector clustering since streamlines traced over the

domain constitute continuous regional or global patterns rather

than local entities of individual vectors. To achieve continuity,

we favor long streamlines and do not impose constraints

such as the separating distance between streamlines. Other

advanced techniques that share the same spirit with our

streamline bundles include multiscale flow field decomposition

using algebraic multigrids [7], streamline predicates for flow

structure definition [31], and pathline clustering for solvent

molecules based on similarity evaluation of dynamic proper-

ties [2]. Compared with these techniques, our work is more

intuitive: it is simpler in concept and easier to understand.

C. Curvature-Guided Visualization

In graphics and visualization, the gradient derived from

the field has been widely utilized in tasks such as shading

calculation and transfer function specification. Besides this

first-order derivative, second-order derivatives such as the cur-

vature have also been leveraged [10], [15], [22]. We utilize the

curvature information derived from the flow field to prioritize

the seeding so that important flow features and patterns can

be captured in the streamline representation. Unlike previous

work, we consider curve-based, not surface-based curvatures.

The curvature information can be computed directly from the

flow field without knowing the tangent curve itself.

III. OUR APPROACH

Figure 1 sketches the major steps of our approach to

generate hierarchical streamline bundles. In the following, we

describe these steps in detail.

A. Streamline Generation

1) Flow Saliency: Our streamline seeding is guided by the

saliency of a flow field. In general, the saliency of an item,

e.g., a voxel in the flow field, is its state or quality of standing

out with respect to neighboring items. For example, in 2D

images, color, intensity, and orientation are the most important

attributes for saliency detection [11]. For 3D meshes, geomet-

ric shapes such as the changes in the curvature lead to the

notion of mesh saliency [18]. A saliency map can be computed

from the data using the “center-surround” operations [11].

We observe that in 3D, the most characteristic properties of

streamlines are their curvature and torsion as these two quan-

tities capture the intrinsic nature of each individual streamline

in space, thus yielding information about the behavior of

the entire flow field. Therefore, we propose to compute the

saliency of a flow field based on the Gaussian-weighted center-

surrounding evaluation of the curvature and torsion values. The

seeding is then prioritized according to flow saliency such that

important characteristics can be captured.

2) Curvature and Torsion: In general, there are two solu-

tions to compute curvature and torsion from an input vector

field. One solution is to compute them from the tangent curves.

In this case, explicit numerical integration along the vector

field is required. A more efficient solution is to compute the

curvature and torsion directly from the vector field and its

partial derivatives [40]. Given a 3D vector field V = (u,v,w)T ,

let L(t) be an arbitrary tangent curve of V and let P ∈ L be an

arbitrary point on L. Furthermore, let L(t) be parameterized

in such a way that P = L(t0) and
.
L (t0) = V (L(t0)). We can

obtain the n-th derivative vector of L (n > 1):

n

L (t0) = (u ·
n−1

Lx + v ·
n−1

Ly + w ·
n−1

Lz )(P), (1)
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Fig. 1. The major steps of our approach to generate hierarchical streamline bundles.

(a) (b) (c) (d) (e) (f)

Fig. 2. Flow saliency. (a) is a LIC image of the 2D flow field of an earthquake simulation data set. (b) shows the curvature field (green for negative value,
red for positive value, black for zero, and white for infinity). We compute the saliency maps at five scales (2ε to 6ε) where ε is 0.7% of the image’s diagonal.
(c)-(e) show three selected scales of 2ε , 4ε , and 6ε , respectively The saliency increases from blue to green to yellow to red. (f) shows the final saliency map
that combines all five saliency maps with a non-linear normalization. We use the final saliency map to guide the seeding.

where
1

L =̂
.
L,

2

L =̂
..
L, and

3

L =̂
...
L etc.

The curvature measures how quickly a curve changes its

unit tangent with respect to its arc length. In 2D, the signed

curvature of point P = L(t0) is computed as [35]:

κ(t0) =
det[

.
L (t0),

..
L (t0)]

‖
.
L (t0)‖3

. (2)

Curves in 3D always have non-negative curvatures. The cur-

vature of 3D point P = L(t0) is computed as [6]:

κ(t0) =
‖

.
L (t0)×

..
L (t0)‖

‖
.
L (t0)‖3

. (3)

The torsion measures how sharply a curve twists out of

its osculating plane. The torsion of 3D point P = L(t0) is

computed as [6]:

τ(t0) =
det[

.
L (t0),

..
L (t0),

...
L (t0)]

‖
.
L (t0)×

..
L (t0)‖2

. (4)

Since there is one and only one tangent curve through every

non-critical point of the vector field V , we can define two

scalar fields for V : the curvature field κ(V ) and the torsion

field τ(V ). Note that κ(V ) and τ(V ) are not defined at critical

points. τ(V ) is also not defined at points where κ = 0.

In Figure 2 (a) and (b), we show an example of a 2D flow

field of an earthquake simulation data set and its curvature

field. At critical points, the denominator of Equation 2 is zero.

We thus assign the maximum curvature value computed from

all the other points to κ(V ). Theisel and Rauschenbach [35]

showed that for non-degenerate critical points, a highlight in

the curvature visualization always indicates a critical point

in the flow field and vice versa. From Figure 2 (b), we can

observe that critical points in the flow field are captured in the

curvature visualization.

3) Saliency Map: A straightforward metric that only con-

siders the values of curvature and torsion may not be able

to capture the perceptual importance of a flow field. For

instance, repeated patterns, even if high in curvature or torsion,

are visually uniform. It is the saliency that enables locations

which stand out from their surround to persist. This center-

surround idea can be implemented as the difference between

the Gaussian-weighted averages computed at fine and coarse

scales [11], [18]. Let G (|κ(P)|,σ) denote the Gaussian-

weighted average of the absolute curvature at point P where

σ is the threshold distance that we consider as neighboring

points of P. We define the curvature saliency of P at a scale

level i as:

Sκ(P),i = |G (|κ(P)|,σi)−G (|κ(P)|,2σi)|, (5)

where σi is the standard deviation of the Gaussian filter at

scale i. Similarly, we define the torsion saliency as:

Sτ(P),i = |G (|τ(P)|,σi)−G (|τ(P)|,2σi)|. (6)

In this paper, we use five scales σi ∈ {2ε,3ε,4ε,5ε,6ε},
where ε is a fixed percentage of the domain’s diagonal. To

combine the saliency maps Sκ(P),i and Sτ(P),i at different scales

and modalities, we utilize a nonlinear normalization operator

N proposed by Itti et al. [11]. Globally, the operator promotes

maps in which a small number of strong peaks of activity

is present, while suppressing maps which contain numerous

comparable peak responses. We apply these three steps to each

saliency map: First, we normalize the values in the map to a

fixed range [0..M] to eliminate modality-dependent amplitude

differences. Second, we find the location of the map’s global

maximum M and compute the average m of all its other local

maxima. Finally, we multiply every point in the map by (M−
m)2. The final saliency map is computed as the summation of

all normalized curvature and torsion saliency maps:

SP =
1

2

(
∑

i

N (Sκ(P),i)+∑
i

N (Sτ(P),i)
)
. (7)

Since planar curves have no torsion, the saliency map of a 2D

flow field is simply the summation of all normalized curvature

saliency maps, i.e., SP = ∑i N (Sκ(P),i). Figure 2 (c)-(f) show

the saliency maps at three different scales and the final saliency

map for the given flow field.
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(a) (b) (c)

Fig. 3. Comparison of (a) random seeding, (b) curvature-guided seeding, and (c) saliency-guided seeding on the 2D flow field of an earthquake simulation.
Each places 218 seeds (shown in red). Random seeding may miss important features (e.g., the four saddles shaded in light blue in (a)). Curvature-guided
seeding may give a high priority to the regions that have high curvature values but are visually uniform (e.g., the region shaded in light orange in (b)), while
leaving more important features only partially covered (e.g., the three saddles shaded in light blue in (b)). Saliency-guided seeding is able to place streamlines
closer to critical points, ensuring that important features are well captured (e.g., the four saddles shaded in light blue in (c)). The resulting set of streamlines
is more suitable for the subsequent bundle extraction and feature highlighting.

4) Saliency-Guided Seeding: With the final saliency map,

our seeding method selects seeds from locations in the order

of decreasing saliency. To favor long streamlines, we integrate

streamlines until they leave the domain or reach critical points.

A large threshold is set for streamline length to avoid the

looping case. If a seed is placed exactly on the critical point,

then there is no streamline traced and this seed is discarded. If

a candidate seed is on any of the streamlines previously placed

(i.e., passing through a pixel/voxel belonging to a seeded

streamline), then we discard this seed as well. The advan-

tage of our saliency-guided seeding over random or uniform

seeding is that it places seeds close to critical points and thus

purposefully generates a set of candidate streamlines suitable

for the following bundle extraction and feature highlighting.

As a comparison, Figure 3 shows the streamlines generated

using random seeding, curvature-based seeding, and saliency-

based seeding, respectively on a 2D flow field. Curvature-

guided seeding uses absolute curvature values to prioritize

candidate seeds. Unlike seeding directly using the curvature

field, the saliency map is able to remove noise in the curvature

field and allow streamlines to be placed closer to critical

points. The seeding process can be terminated when high

saliency regions corresponding to features have been covered.

B. Hierarchical Clustering

1) Similarity Measure: The output of our saliency-guided

streamline generation is a set of streamlines F with each

represented by a set of 3D points pk, i.e., F = {Fi | Fi = {pk}}.
The similarity measure can be defined using the Euclidean

distance between pairs of points on two input streamlines Fi

and Fj. For example, we can form point pairs by mapping

each point of one streamline to the closest point on the other

streamline [5]. Three pairwise distances between Fi and Fj

can be used: the closest point distance, mean of closest point

distances, and Hausdorff distance. As suggested by Moberts

et al. [26], we use the mean of closest point distances in our

implementation, which is defined as:

dM(Fi,Fj) =
1

2

(
dm(Fi,Fj)+dm(Fj,Fi)

)
, (8)

where
dm(Fi,Fj) =

∑pk∈Fi
minpl∈Fj

‖pk− pl‖

N
,

and N is the number of points sampled along Fi. dm(Fj,Fi) is

defined similarly.

2) Bottom-Up Clustering: To cluster the streamlines, we

use an agglomerative hierarchical clustering. This bottom-up

method begins with each streamline in a distinct cluster, and

successively merges the two most similar clusters together

until a stopping criterion is satisfied. Different variations of

hierarchical clustering algorithms exist depending on how the

similarity between a pair of clusters is defined. Among them,

the single-link and complete-link algorithms are most popular

ones [12]. In the single-link method, the distance between two

clusters is the minimum of the distances between all pairs of

items (one item from the first cluster and the other from the

second). In the complete-link method, the maximum of the

distances between all pairs of items is used. In either case, two

clusters are merged to form a larger cluster based on minimum

distance criteria. Hierarchical algorithms are more versatile

than partitional algorithms such as the k-means algorithm.

For example, the single-link clustering method performs well

on data sets containing non-isotropic clusters, including well-

separated, chain-like, and concentric clusters while the k-

means clustering algorithm works well only on data sets

having isotropic clusters.

Moberts et al. [26] evaluated the combinations of four differ-

ent clustering methods (single-link, complete-link, weighted-

average, and shared nearest neighbor) and four different sim-

ilarity measures (closest point distance, mean of closest point

distances, Hausdroff distance, and end point distance) in the

context of DTI fiber clustering. They reported that the use of

hierarchical single-link clustering combined with the mean of

closest point distances gives the best results. Since DTI fibers

and general streamlines share great similarity, we follow their

suggestion and use the single-link with the mean of closest

point distances in our streamline clustering.

During the clustering process, we generate a binary tree to

indicate which two clusters are merged at each iteration. Each

node in the tree has an attribute, step, recording at which
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(a) (b)

(c) (d)

Fig. 4. (a) and (c) shows two coarse LOD results with three and six
clusters, respectively, after the bottom-up clustering process. Each cluster
uses a different color. Notice the outlier cluster with only one very short
streamline at the very bottom-left corner in both images. (b) and (d) shows
the corresponding LOD results after we perform the top-down balancing. We
can observe that the top-down balancing takes care of the outliers presented
in the streamline clusters and presents a more desirable output hierarchy.

step the associated cluster is created. By default, step = 0

for all leaves and step = M − 1 for the root, where M is

the number of input streamlines. For each tree node, we also

assign an attribute, size, recording the number of streamlines

in its cluster. size = 1 for all leaves and size = M for the root.

3) Top-Down Balancing: An issue we experience with the

hierarchical clustering is that the resulting binary tree may

not be balanced. By balanced, we mean that for all nodes at

a coarse LOD, their corresponding streamline numbers (i.e.,

their size values) should be similar. A balanced clustering tree

leads to LOD refinement that is consistent with our intuition.

The reason that we may produce an unbalanced clustering tree

is because some streamlines may have very short paths traced

over the domain. These streamlines are typically along the

domain boundary or are between close critical points, which

appear as outliers or noise [1]. They are merged very late in the

bottom-up clustering process and stay close to the root. Thus,

they will show up even though we select a few clusters for

display, which is not desirable. Figure 4 (a) and (c) show two

LODs of the earthquake data set to demonstrate the unbalanced

streamline hierarchy. We can see that it is usually difficult for

users to perceive such small outliers even at a coarse LOD.

Especially for 3D vector fields, short streamlines can be easily

occluded, and the corresponding browsing through LODs does

not best match a user’s general intuition on how an object

should be disassembled.

A possible solution to overcome this problem is to traverse

a clustering tree in a different way. For instance, in the field

Algorithm 1 BALANCETREE(rootnode: treenode)

// Create a new list of treenodes sorted in the order of decreasing size
nodelist ← new multimap <int, treenode, greater<int>>
nodelist.insert(rootnode.size, rootnode)
M ← the total number of input streamlines
i← 0
while true do

// Get the largest node in the list
activenode← nodelist.begin()
// Stop the loop when nodelist only contains the leaves
if activenode is a leaf then

break

end if

// Compute clusternum if activenode is split into two
clusternum← nodelist.size()+1
// Compute the average size
avg← root.size/clusternum

// Balance the subtree rooted at activenode if not all its children are
balanced
if activenode.childl .size/avg < λb or activenode.childr.size/avg < λb

then

BALANCESUBTREE(rootnode, activenode, clusternum)
end if

// Assign a new step value to activenode

activenode.step←M−1− i

i← i+1
nodelist.insert(activenode.childl .size, activenode.childl)
nodelist.insert(activenode.childr.size, activenode.childr)
nodelist.erase(activenode)

end while

Algorithm 2 BALANCESUBTREE(rootnode: treenode;
activenode: treenode; clusternum: int)

nodelist ← new multimap <int, treenode, greater<int>>
nodelist.insert(activenode.childl .size, activenode.childl)
nodelist.insert(activenode.childr.size, activenode.childr)
while true do

node← nodelist.begin()
avg← root.size/clusternum

if node.size/avg≥ λb and node.sibling.size/node.size≥ λ f then

seednode← node.parent

break

end if

if node is a leaf then

seednode← node.parent

break

end if

nodelist.insert(node.childl .size, node.childl)
nodelist.insert(node.childr.size, node.childr)
nodelist.erase(node)
clusternum← clusternum+1

end while

LOCALCLUSTERING(rootnode, activenode, seednode)

of software evolution, Voinea and Telea [39] proposed two

methods to generate partitions with near same sizes or near

internal similarities from a highly unbalanced clustering tree.

However, with their pre-order tree traversal scheme, it is still

possible to visit and split smaller tree nodes before visiting

larger ones, provided that these smaller tree nodes are close

to the root as shown in our study.

We perform a top-down balancing process after the bottom-

up hierarchical construction. The pseudocode is given in

Algorithms 1, 2, and 3. In BALANCETREE, we start with a

LOD only consisting of the root of the binary tree and refine

the LOD by visiting the nodes in the decreasing order of their

sizes. For each visited node, activenode, we examine whether

its two children are balanced or not. For an unbalanced child,
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Algorithm 3 LOCALCLUSTERING(rootnode: treenode;
activenode: treenode; seednode: treenode)

nodearray← new array
nodearray.add(seednode.childl)
nodearray.add(seednode.childr)
// Gather the outliers
node← seednode

while node �= activenode do

nodearray.add(node.sibling)
node← node.parent

end while

Construct a new clustering tree of all the items in nodearray using the
same bottom-up clustering method, where the distance between any two
clusters containing seednode.childl and seednode.childr is set to +∞.
// Update rootnode (if needed), and activenode

if rootnode = activenode then

rootnode← root of the new tree
end if

activenode← root of the new tree

the ratio of its size to the average node size at the current LOD

is less than λb. If the children are balanced, we continue our

traversal process; otherwise, we perform the balancing process

on activenode in BALANCESUBTREE. Then, for activenode,

we assign a new step value, step = M− 1− i, where M is

the number of input streamlines and i is the step at which

activenode is visited. We continue our traversal process until

the entire tree is balanced.

In BALANCESUBTREE, we visit the descendants of

activenode in the decreasing order of their sizes to find a node,

seednode. There are two cases for seednode. In the first case,

the ratio of one seednode’s child size to the average node size

is greater than λb, and the ratio between two children’s sizes

is greater than λ f . The effects of λb and λ f will be discussed

in Section IV-D. In the second case, seednode’s children are

two leaves, which means that the tree rooted at activenode is

close to a vine (i.e., a chain-shape degenerate binary tree that

is highly unbalanced). We can see that in both cases the sibling

of each node along the path from seednode to activenode is

corresponding to a small cluster (i.e., an outlier).

In LOCALCLUSTERING, we gather these outliers as well

as seednode’s children, and perform a localized bottom-up

clustering within these nodes. The distance between any two

clusters containing seednode’s children is set to +∞. The

distance between any other two clusters is still computed using

the single-link with the mean of closest point distances. By this

means, we obtain a refined subtree rooted at activenode that

has two more balanced branches, and seednode’s children are

separated into these two branches. Meanwhile, the original

clustering result is largely preserved in the refined subtree.

This is because we use the same similarity measurement

during the localized clustering, and the subtree rooted at those

outliers remains intact. As a result, we can ensure that the

top-down balancing process leverages the bottom-up clustering

results as much as possible for an efficient restructuring of the

clustering tree. We present a quantitative balancing analysis in

Section IV-D to validate our statement. Figure 4 (b) and (d)

show the LOD results after the top-down balancing process.

As we can see, the balanced streamline hierarchy yields the

LODs that are more consistent with our intuition.

Algorithm 4 COMPUTECONFIDENCE(node: treenode)

// Compute boundary cells
bcells← node.cells∩node.sibling.cells

// Identify boundary lines
if 2D grids then

pointlist ← new list
for each cell c in bcells do

for each line l in c.lines do

Compute l’s intersections on c’s boundary and insert them into
pointlist

end for

Sort pointlist in the clockwise order
Identify all pairs of consecutive intersections in pointlist that belong
to two boundary lines of different clusters, and insert the boundary
lines of node into node.boundarylines

end for

else if 3D grids then

for each cell c in bcells do

linelist ← c.lines∩node.lines

if linelist.size() < node.lines.size()/λm then

Randomly choose δn lines from linelist and insert them into
node.boundarylines

end if

end for

end if

// Inherit parent’s boundary lines
if node is not the root then

node.boundarylines.insert(node.parent.boundarylines)
end if

for each line l in node.lines do

l.db ← l’s minimal distance to all lines in node.boundarylines

end for

for each line l in node.lines do

Normalize l.db

// Compute confidence value with respect to boundary lines
l.Cb ← 1− l.db

end for

// Find the central line of node

for each line l in node.lines do

std ← standard deviation of l’s distances to all lines in node.lines

if minstd > std then

minstd ← std

central ← l

end if

end for

for each line l in node.lines do

l.dc ← l’s distance to central

end for

for each line l in node.lines do

Normalize l.dc

// Compute confidence value with respect to the central line
l.Cc ← l.dc

// Compute the average confidence value
l.Ca ← (l.Cb + l.Cc)/2

end for

Sort node.lines in the nondecreasing order based on Ca

if node is not a leaf then

COMPUTECONFIDENCE(node.childl)
COMPUTECONFIDENCE(node.childr)

end if

C. Streamline Bundle Generation

1) Bundle Definition: Given a cluster in the hierarchy,

there are two ways to define representative streamlines and

form the bundle. We can either use the streamlines close to

the cluster centroid or use the streamlines along the cluster

boundary. In this paper, we define the cluster boundary as the

closest neighboring streamlines that belong to different clus-

ters. Choosing streamlines close to the centroid is commonly

used in most cases. However, to form streamline bundles,

we choose boundary streamlines to represent the cluster. Our
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(a) (b) (c) (d)

Fig. 5. Comparison of the effects between central and boundary streamlines
of the clusters using a synthesized data set. (a) shows a certain LOD with
9 clusters, where red streamlines are the centroids of the clusters. (b) shows
central streamlines only, where the saddle is not captured. (c) shows boundary
streamlines only, where both the saddle and the sink are captured. (d) shows
both central and boundary streamlines. Note that central streamlines in (d)
will be captured by newer boundary streamlines added in (c) at a finer LOD.

rationale is that streamline bundles should highlight flow

features and patterns such as critical points. For a source

or sink, it does not matter if we select close-to-centroid or

boundary streamlines since either group of streamlines can

approach arbitrarily close to the source or sink. However, only

boundary streamlines are closest to a saddle and are thus best

to reveal the saddle together with other boundary streamlines

of neighboring clusters. We illustrate this idea with an example

data set in Figure 5. Therefore, we define streamline bundles

as the union of streamlines that are close to the boundaries of

neighboring clusters. With the agglomerative clustering, we

can create streamline bundles at various LODs.

2) Boundary Identification: Our boundary identification is

sketched in Algorithm 4, which is performed in a top-down

fashion. We first identify boundary streamlines based on the

neighborhood relationship among the clusters. We take a grid,

which has the same resolution as the original flow field, to

cover the domain. For each tree node, node, it stores all its

streamlines in the list node.lines, and stores all the grid cells

intersecting with its streamlines in the list node.cells. For each

cell c, it stores all its intersecting streamlines in the list c.lines.

For each node, we first obtain a set of its boundary grid

cells that are shared with its sibling, and then identify the

boundary streamlines within each boundary grid cell. For

2D grids, we compute the streamline intersections on the

grid cell’s boundary and use them to identify the boundary

streamlines. For 3D grids, we opt for a simpler solution that

randomly chooses the streamlines on the grid cell as boundary

streamlines. The number of lines selected is constrained by

a predefined threshold δn (which is a small integer such

as four or five). However, when a grid cell either covers

or is close to critical points, such as sinks or sources, it

might intersect with most of the streamlines of its intersecting

cluster with respect to a ratio λm (we set λm = 0.5). In this

case, the randomly selected streamlines may not lie on the

boundary and we just discard the grid cell from consideration.

This process continues until all boundary cells have been

checked. Moreover, each non-root node also nicely inherits

the boundary streamlines identified from its parent node. In

this way, we can identify a set of boundary streamlines for a

cluster. For each streamline, we assign a confidence value with

respect to the boundary streamlines, Cb = 1−db, where db is

the streamline’s normalized minimal distance to all boundary

streamlines. A streamline with a larger (smaller) Cb is close

(a) (b)

(c) (d)

(e) (f)

Fig. 6. (a), (c), and (e) show three LOD results with 12, 70, and 166 clusters
respectively on another 2D earthquake flow field. (b), (d), and (f) show the
streamlines that are close to the cluster boundaries. The saliency histogram
and accumulated histogram are displayed in the lower left and right corners,
respectively. Notice that streamline bundles identified in a lower resolution
are part of bundles in a higher resolution, which makes the transition smooth
between different LODs.

to the boundary (center) of the cluster.

Since our saliency-guided seeding strategy does not require

dense seeding, there can be some boundary streamlines that

are not close to any neighboring clusters. We identify these

boundary streamlines based on the existing similarity charac-

teristics. We first identify the central streamline of the cluster,

i.e., the streamline whose standard deviation of the distances

to all other streamlines in the cluster is minimal. Again,

we use the mean of the closest point distances to compute

the distance between two streamlines. For each streamline,

we assign a confidence value with respect to the central

streamline, Cc = dc, where dc is the streamline’s normalized

distance to the central streamline. A streamline with a larger

(smaller) Cc is close to the boundary (center) of the cluster.

Finally, for a cluster, we assign an average confidence

value, Ca = (Cb + Cc)/2, to each streamline in the cluster.

We then sort all the streamlines in the nondecreasing order
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# avg points saliency streamline similarity bottom-up top-down boundary total
data set dimension # streamlines per streamline map (GPU) generation (CPU) measure (GPU) clustering (CPU) balancing (CPU) identification (CPU) preprocessing

earthquake (Fig. 2) 100×100 218 202 0.0011s 0.85s 0.09s 0.05s 0.01s 0.22s 1.22s
earthquake (Fig. 6) 100×100 826 334 0.0011s 23.25s 9.73s 1.22s 0.04s 1.85s 36.09s

hurricane (Fig. 7) 500×500×100 3000 828 2.4569s 116.54s 224.69s 14.42s 0.64s 1.34s 360.09s
combustion (Fig. 8) 506×400×20 3000 173 0.3712s 15.02s 31.26s 28.15s 4.17s 1.02s 79.99s

plume (Fig. 9) 126×126×512 2000 1495 0.7838s 279.98s 319.50s 11.09s 3.54s 1.46s 616.35s
supernova (Fig. 12) 216×216×216 3000 617 0.9965s 65.88s 141.57s 15.01s 1.01s 1.71s 226.18s

TABLE I
THE 2D AND 3D FLOW DATA SETS TESTED IN OUR EXPERIMENTS, THEIR CONFIGURATIONS AND PREPROCESSING TIMING PERFORMANCE IN SECONDS.

based on Ca. This order will be used to control the density of

streamline bundles. Note that all the above steps for boundary

identification are performed during the preprocessing stage.

3) Bundle Extraction: At runtime, we form the streamline

bundle by first removing the central streamline, then iteratively

removing the streamlines in the sorted order. The number

of streamlines left can be controlled either with a certain

percentage or a fixed number. Given a LOD, the user can

interactively change either parameter and observe an animated

effect illustrating how streamlines are removed successively

from each cluster to reveal the bundles.

4) LOD Control: At runtime, the user can control the LOD

by adjusting two parameters: the number of clusters c and the

density of boundary streamlines ρ . Selecting a larger value

for c reveals more details. The LOD selection is automatically

determined by the step order in the binary clustering tree. ρ
can be controlled via a threshold that determines how many

percent of streamlines or how many streamlines should be

kept to form the bundles. A larger value for the threshold

leads to denser streamline bundles. Besides automatic LOD

selection, the user may want to explore a certain region of

interest. As such, we also allow the user to manually select a

cluster and refine it to observe more details. In this way, the

user can dissect the flow using a coarse LOD and selectively

refine clusters of interest while keeping the rest of LOD

as the context. This will produce a customized, multiscale

summarization of the flow field to express the user’s interest.

IV. RESULTS AND DISCUSSION

A. Data Sets and Timing Performance

We experimented our approach with six flow data sets. Two

earthquake data sets are from the extracted slides of a 3D

simulation of the 1994 Northridge earthquake. The hurricane

data set is from a simulation of the Hurricane Isabel, a strong

hurricane in the west Atlantic region in September 2003. The

combustion data set is from a turbulent combustion simulation

performed at the Sandia National Laboratories. The plume data

set is from a simulation of solar plume at the National Center

for Atmospheric Research. Finally, the supernova data set is

from a simulation of the development of a rotational instability

in a supernova shockwave. Table I lists these data sets, the

number of streamlines we placed, the average number of points

per streamline, and the timing for every step of our algorithm.

Compared with the other three 3D flow data, the reason that

the combustion data set has a much smaller average number

of points per streamline is due to its turbulent nature (with the

present of many small-scale critical regions) and the thin slab

we took (20 voxel-wide along the z axis).

We used a hybrid CPU-GPU solution in our computation

with the following hardware configuration: a quad-core Intel

i7-975 3.33GHz processor with 6GB memory, and an nVidia

GeForce GTX 285 with 1024MB video memory. All the

timing reported in Table I was for the steps conducted during

the preprocessing. The computation of saliency map and

similarity measure was performed using CUDA. The timing

mainly reflects the complexity of each step. The complexity

of saliency map computation is O(kn), where n is the number

of voxels and k is the size of Gaussian kernel, which could

be costly to compute using the CPU for large n and k. For

instance, it took about one hour to calculate the saliency

map for the hurricane data set using the CPU, while it only

took about two seconds using the GPU. The complexity of

similarity measure computation is O(m2n2), where n is the

number of streamlines and m is the number of points per

streamline. Computing this step using a single CPU could

be prohibitively expensive. There are certain optimization

approaches available. We used a CUDA implementation to

accelerate the computation because the task is embarrassingly

parallel, where computing the distance between each pair

of streamlines can be independently performed by a CUDA

thread. The bottom-up clustering takes O(n2 logn) time, where

n is the number of streamlines. This computation is affordable

using the CPU for small n in the current setting. For boundary

identification, the time spent on computing the confidence

values is proportional to the number of streamlines, while

evoking the calculations for boundary streamline identification

largely depends on the closeness between the clusters which

can vary among different data sets. At runtime, the bundle

extraction time was less than 1ms for all test data sets, which

was omitted in Table I. The streamline hierarchy built in the

preprocessing stage enables the user to control the LOD and

explore the data interactively in real time. In the rendering,

we use the tapering effect (i.e., varying the thickness along

the streamlines) to highlight the flow direction.

B. 2D Flow Field Results

Figures 2, 3, and 4 illustrate the process of our approach

on a 2D earthquake flow field: deriving flow saliency, seeding

based on the saliency, constructing the streamline hierarchy,

and performing the balancing. Examples of LOD selection

and streamline bundles on a more complex 2D earthquake

flow field are given in Figure 6. As we can see, different

LODs and their corresponding streamline bundles are able to

capture essential flow features and structure in an adaptive

manner. We also plot the saliency histograms and accumulated

histograms in Figure 6 (b), (d), and (f). In both saliency
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Fig. 7. (a)-(c) show the LOD refinement of the streamline hierarchy of a hurricane data set with 4, 8, and 18 clusters, respectively. (d)-(f) show the gradual
removal of streamlines from 128 clusters to reveal the streamline bundles. (d) shows all streamlines, (e) shows 33% of streamlines in each cluster, and (f)
only shows streamlines that are the cluster boundaries. The saliency histogram and accumulated histogram are displayed in the lower left and right corners,
respectively. (g)-(j) show the user-specified clusters (in their original colors) as the focus and the rest (in gray) as the context. (g) shows all streamlines, (h)
shows 66% of streamlines in each cluster, (i) shows 33% of streamlines in each cluster, and (j) only shows streamlines that are the cluster boundaries.

and accumulated histograms, the horizontal axis represents

the range of saliency values. The vertical axis of a saliency

histogram represents the number of voxels with values equal

to a given value, while the one of an accumulated histogram

represents the number of voxels with values less than or

equal to a given value. The histograms in pink are computed

from the saliency values of all the voxels in the original

field, and the ones in blue are computed from the saliency

values of the voxels covered by the displayed streamlines.

We can see that our streamline bundle representation is quite

effective as high-saliency regions are well covered even though

a smaller number of streamlines is chosen. Our solution is also

quite efficient since we do not spend much ink (i.e., effective

pixels) for drawing the 2D vector field, especially for Figure

6 (b) and (d), as evidenced by the accumulated histogram.

Furthermore, our method guarantees that streamline bundles

extracted in a lower resolution are part of the bundles in

a higher resolution. This capability provides us a nice way

to simplify the underlying flow field in multiple scales and

produces a smooth transition between different LODs.

C. 3D Flow Field Results

Figure 7 shows the results with a hurricane simulation data

set. The first row shows the coarse-to-fine cluster selection.

The second row shows the density control to reveal streamline

bundles. As we favor long streamlines, many interesting small-

scale features besides the hurricane’s eye can be captured in

streamline visualization. Such results are not available in other

flow visualization work using the same data set. Moreover,

notice how well Figure 7 (f) maintains detail flow features

presented in (d). Streamline bundles succinctly depict the flow

patterns using a small number of lines while in the meantime,

accentuating visual foci via organizing them in the form of

bundles. This is confirmed by the saliency histogram and

accumulated histograms we plot: the accumulated histograms

show that the streamlines only cover a small portion of the

field, while the saliency histograms show that the streamlines

capture the most salient regions. The third row shows fo-

cus+context visualization of streamline bundles. This happens

when the user wants to focus on a few streamline clusters and

explore them separately from the rest of clusters. We display

clusters that are not selected in less detail and fade them into

the context using an appropriate coloring scheme. The clusters

of focus are thus standing out. The user can change the density

for each cluster in focus for viewing. As we can see, Figure

7 (j) captures the overall and detail patterns shown in (g).

This again confirms that our streamline hierarchy and bundling

technique is able to preserve essential flow features with a

small number of streamlines.

Besides the more structured hurricane flow, we also exper-
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(a) (b) (c) (d) (e) (f)

Fig. 8. A zoom-in into a turbulent combustion data set. (a)-(c) show the LOD refinement of the streamline hierarchy with 20, 100, and 200 clusters,
respectively. (d)-(f) show the gradual removal of streamlines from 200 clusters to reveal the streamline bundles. (d) shows 66% of streamlines in each cluster,
(e) shows 33% of streamlines in each cluster, and (f) only shows streamlines that are the cluster boundaries.

Fig. 9. Dissecting the plume data set. Leveraging the streamline hierarchy we have built, we can cut apart the underlying flow field to examine the internal
structure in a coarse-to-fine manner. The explored hierarchy is illustrated in the top-left corner.

imented with a very turbulent combustion flow, which is very

challenging to visualize using existing streamline visualization

techniques. Specifically, we took a slab of dimension 506×
400×20 from the original field of dimension 506×400×100

in our study. In Figure 8, we show streamlines partitioned into

different numbers of clusters and the coarsening of streamlines

in each cluster to reveal streamline bundles. We point out

that although the underlying flow field is very turbulent, our

approach could cluster streamlines into a hierarchy and still

represent streamline bundles in a meaningful sense. Compared

with Figure 8 (c) and (f), even though some small-scale

features are lost in (f), much of the large-scale pattern remains.

The streamline hierarchy we build also allows us to partition

the flow field. We can cut apart the field and observe individual

parts separately and/or in the context. Figure 9 demonstrates

an example with the plume data set. As occlusion is reduced,

the entire set of streamlines can be viewed or understood better

with the separation of different subsets of streamlines.

D. Quantitative Top-Down Balancing Analysis

We applied the normalized information distance (NID)

proposed by Vinh et al. [38] as the metric to validate our

top-down balancing method. As a general-purpose measure

for comparing clusterings, NID has an advantage over the

popular adjusted Rand index [28] in that it can be used in

the non-adjusted form, thus enjoying the property of being
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(a) (b)

(c) (d)

Fig. 10. Quantitative evaluation of top-down balancing using the earthquake data set. (a) is the comparison of the standard deviation of streamline numbers
among clusters for the unbalanced case and the balanced cases with different parameter values. (b) shows the matching between the balanced result of 6 clusters
with the unbalanced results. In (c) and (d), we plot for each cluster number in the balanced clustering results, the minimal NID value and the corresponding
most similar cluster number from the unbalanced clustering results, respectively.

(a) (b) (c) (d) (e) (f)

Fig. 11. Comparison of our approach with the vector field clustering method [34] using a synthesized data set that mimics the one used in their paper. (a)
is a 2D slice view of the vector field. (b) is the 3D saliency field. (c) and (d) are our results with 3 and 10 clusters, respectively. (e) and (f) are the results
using [34] with 18 and 60 clusters, respectively. Both (c) and (e) show 18 streamlines, and both (d) and (f) show 60 streamlines.

�
�

�
�

λb

λ f 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 2.16 2.07 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04
0.2 2.08 1.86 1.84 1.81 1.81 1.83 1.83 1.83 1.83 1.83
0.3 2.04 1.57 1.43 1.44 1.45 1.51 1.50 1.50 1.50 1.50
0.4 1.74 1.51 1.29 1.25 1.27 1.41 1.40 1.40 1.40 1.40
0.5 1.62 1.36 1.32 1.19 1.17 1.36 1.37 1.38 1.38 1.38

TABLE II
THE AVERAGE STANDARD DEVIATION s OF STREAMLINE NUMBERS

AMONG CLUSTERS FOR DIFFERENT COMBINATIONS OF λb AND λ f .

a true metric in the space of clusterings. We used the 2D

earthquake data set (Figure 3) with 218 streamlines and

compared the quantitative results before and after top-down

balancing. We selected different combinations of λb and λ f

for the balancing. After top-down balancing, for a given

combination of λb and λ f , we first calculated the standard

deviation of streamline numbers among clusters at each LOD,

i.e., si where i = 2, . . . ,218 corresponding to the LODs with the

cluster number ranging from 2 to 218. We then calculated the

average of si as s. Table II lists the values of s for the selected

combinations of λb and λ f . We can observe that for a given λb,

the effect of changing λ f is only marginal when λ f is greater

than 0.1. In addition, a larger value of λb corresponds to a

smaller s since more clusters are involved in the balancing.

Next, we validated our balancing method by fixing λ f as 0.5

and choosing λb as 0.1, 0.2, 0.3, 0.4, and 0.5.

In Figure 10 (a), we compare the unbalanced clustering

results to the balanced clustering results. Clearly, the results

after balancing significantly reduce the difference of streamline

numbers among the clusters when the number of clusters is

small. Again, we can see that a larger λb gives a smaller

standard deviation. As the standard deviation converges with

the increase of the number of clusters, we only show the results

with the number of clusters ranging from 2 to 42 in the figure.

In Figure 10 (b), we choose the clustering result of 6 clusters

after the balancing where λb = 0.3 and measure the NID of this

clustering result with the unbalanced clustering results (where

the number of clusters ranges from 2 to 218). We can see that

the balanced result with 6 clusters is most similar to the result
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(a) (b) (c) (d) (e) (f)

Fig. 12. Comparison of our approach with the vector field clustering method [34] using a supernova data set. (a) and (b) are the results using [34] with
3000 and 318 clusters, respectively. Our results with 24 clusters are shown in (c) and (d) with all streamlines and streamline bundles, respectively. (e) and (f)
show the user-specified clusters as the focus and the rest as the context. Both (a) and (c) show 3000 streamlines, and both (b) and (d) show 318 streamlines.

of 12 clusters in the unbalanced case, with the minimum NID

value of 0.174. This result indicates that our balancing method

can effectively balance the streamline hierarchy, particularly

close to the root where the original hierarchy is least balanced.

On the other hand, we point out that our balancing process

does not dramatically alter the original streamline hierarchy.

To confirm this, for each cluster number in our balanced

clustering results, we found the minimal NID value (Figure

10 (c)) and the corresponding most similar cluster number

(Figure 10 (d)) from the unbalanced clustering results. As we

can see, for the clustering result at each level of our balancing

method, we can always find a very similar cluster from the

unbalanced clustering with a small NID value. In general, for

the pair of clusters with the minimal NID value, the level

in the unbalanced clustering is larger than the level in the

balanced clustering. This is because the small clusters (i.e.,

outliers), which are close to the root in the unbalanced results,

are moved down the hierarchy through the balancing. Our

balancing method preserves the overall clustering results with

the small NID values (shown in Figure 10 (c)) and achieves

more balanced results with smaller standard deviation values

(shown in Figure 10 (a)). The same conclusions can be drawn

from the results with other data sets we experimented with.

E. Comparison with Vector Field Clustering

Notice that our saliency-guided seeding results are not the

final results. They are only immediate results for deriving

the streamline hierarchy and extracting streamline bundles. As

such, instead of comparing with other seeding techniques, we

compare our approach with the vector field clustering method

presented by Telea and van Wijk [34]. Both solutions share

the similarity of creating a hierarchy to simplify the flow field

in an adaptive manner. While they cluster the original vector

data, we cluster the traced streamlines.

Figure 11 shows the comparison using a synthesized vector

field. From (a), we can clearly see that there are one sink and

one saddle presented in the data. (b) shows a volume rendering

of the saliency field, where the sink and saddle regions are

with high saliency values. (c) and (d) show our results, where

the streamlines are the cluster boundaries from the LOD

refinement of the streamline hierarchy with 3 and 10 clusters,

respectively, and the streamlines are colored with respect to

the partitions. (e) and (f) show the results using [34], where the

streamlines are the representative streamlines from the vector

field hierarchy with 18 and 60 clusters, and the streamlines

are colored with respect to the velocity magnitudes. With our

saliency-guided seeding and streamline bundle method, we can

use a fewer number of streamlines to effectively capture the

sink and saddle in this data.

We further conduct another experiment using the super-

nova data set. Figure 12 (a) and (b) show the results using

[34], where the streamlines are the representative streamlines

from the vector field hierarchy with 3000 and 318 clusters,

respectively, and the streamlines are colored with respect to

the velocity magnitudes. (c) and (d) show our results, where

the streamline bundles are revealed from 24 clusters, and the

streamlines are color with respect to the partitions. (c) shows

all streamlines, and (d) shows 10% of streamlines in each

cluster. With our method, we can effectively place streamlines

to cover important areas in the data and perform focus+context

cluster highlighting. In (e) and (f), we can clearly see that

two flow patterns moving along the opposite directions are

identified and separated with streamline bundles. Our results

help the scientists observe details of the flow field to verify

their hypotheses.

F. Saliency and Critical Points

Utilizing the concept of flow saliency, we promote critical

points to salient regions (refer to Figure 2 (b) and (h)). This

makes it easier for us to capture flow features around critical

points through saliency-guided seeding. The saliency tells how

well locations standing out from their surround. In case that

a flow field consists of uniformly-distributed repetitive critical

points, then the non-linear normalization will suppress these

small-scale features in the final saliency map. For complex

3D flows, this is actually desirable as we want to set higher

priority to more salient critical regions than less salient critical

points. This principle is also consistent with what Xu et al. [42]

advocated in their recent work on entropy-based streamline

seeding. While in [42], they had to perform thresholding

or denoising to remove certain local maxima in the derived

entropy field, our concept of flow saliency naturally takes

care of this issue. In our current implementation, the seeding

termination threshold is adjusted on a trial-and-error basis as

the decision for high saliency value can vary among different

data sets. A solution that automates this process is desirable.

G. Coverage, Uniformity, and Continuity

In terms of coverage, our method samples the “feature

space” densely enough such that relevant features are reflected
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in streamline visualization. The spatial space, however, is

selectively sampled to focus only on interesting flow patterns.

Uninteresting regions that are not covered are more or less

uniform. They can be safely inferred from streamlines sur-

rounding them. In terms of uniformity, we do not maintain a

uniform distribution of streamlines over the field. Instead, we

keep high density along flow features but near zero density

for the rest of the field. The resulting streamline bundles

accentuate flow features while discarding uninteresting regions

through clustered but not cluttered display. Unlike some

illustrative techniques that place streamlines very succinctly

[19], we allow dense placement of streamlines in critical

regions to further strengthen visual perception or impression

and give the user the freedom to adjust the density at runtime.

Our experience shows that this addition is very effective,

especially for viewing 3D flow data sets, as we found out that

too few streamlines do not well convey the 3D vector fields

perceptually even though the flow structure is captured. We

note that if needed, additional seeds can be placed in the flow

field to maintain a more uniform distribution of streamlines.

Random seeding following a Poisson disk/sphere distribution

[37], [43] can be utilized. In some cases, this may help the

user gain a better understanding of the overall flow field. In

terms of continuity, our seeding algorithm only determines

where to drop the seeds and we allow the streamlines to be

traced as long as possible. Without enforcing the separating

distance between streamlines, the flow patterns revealed in our

visualization are thus continuous and complete.

V. CONCLUSIONS AND FUTURE WORK

Effective visualization of three-dimensional flow fields re-

mains a challenge, which is exacerbated by the increase in

size and complexity of flow data sets ever produced. The

hierarchical streamline bundles we have introduced offer a

new way to characterize and visualize the flow structure and

patterns in multiscale fashion. Streamline bundles highlight

critical points clearly and concisely. Exploring the hierarchy

allows a complete visualization of important flow features.

Thanks to selective streamline display and flexible LOD

refinement, our multiresolution technique is scalable and is

promising for viewing large and complex flow fields.

We define flow saliency using the curvature and torsion

fields with the goal of highlighting critical points in the

saliency map for streamline seeding. The definition of flow

saliency can be modified to further categorize the types of

critical points or to encompass other flow features of interest,

which we would like to explore more. In the future, we will

improve flow feature navigation and selection by developing a

visual representation similar to the contour tree for abstracting

the streamline hierarchy. This addition will provide valuable

feedback to the users and guide their exploration: they are able

to tell, for example, how many features are left unexplored in

a cluster, and decide in advance whether the cluster should be

further refined or not. We will apply our technique to other

real-world 3D flow data sets and involve domain scientists

in the evaluation of this new approach. In particular, we will

study parallelization schemes to improve the scalability of our

approach and address the large data problem by leveraging

the power of parallel heterogeneous systems. Finally, we will

extend our approach to 3D vector fields on irregular grids.
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[13] R. Jianu, Ç. Demiralp, and D. H. Laidlaw. Exploring 3D DTI fiber tracts

with linked 2D representations. IEEE Transactions on Visualization and

Computer Graphics, 15(6):1449–1456, 2009.
[14] B. Jobard and W. Lefer. Creating evenly-spaced streamlines of arbitrary

density. In Visualization in Scientific Computing, pages 43–55, 1997.
[15] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Möller. Curvature-based
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